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1. Introduction

An important goal for the study of black hole thermodynamics is to understand the grav-

itational description of the microstates responsible for the entropy. String theory and in

particular the AdS/CFT correspondence offers the tools needed to explore these issues.

The past few years have seen significant progress in our understanding of the geometri-

cal description of the states underlying some special black holes which can be embedded

in string theory. Though a generic microstate responsible for the black hole entropy is

expected to admit a description only in the full string theory, there is at least a subset

of these states which can be well described by supergravity solutions. Probably the best

studied example is the supersymmetric black hole in five dimensions [1, 2]. The microstates

of the five dimensional black hole with two charges, which has a string-scale horizon if we

take into account higher derivative corrections, have been completely described [3]–[12].

For the black hole with three charges in five dimensions, which has a macroscopic horizon,

many explicit examples of the microstates are known [13]–[24], though the picture is far less

complete. Similar results have been achieved for the case of three and four charge systems

in four dimensions [25]–[27]. For a review of some of these developments, see [28, 29].

The results mentioned above refer to systems with unbroken supersymmetry in four

or five dimensions. It is an important and non-trivial task to extend the success of the

supersymmetric case to the more general non-supersymmetric states. Although the su-

persymmetric black holes already have finite horizon areas, the non-supersymmetric ones

are qualitatively different: notably, because they have a non-zero temperature. This im-

plies that the study of non-supersymmetric black holes is significantly more complex; it

will involve issues like Hawking radiation and dynamical instabilities. Also, from a techni-

cal point of view, the task of finding supersymmetric microstates is greatly facilitated by

the classification theorems in supergravity which hold in the presence of some unbroken

supersymmetry [30]. For the non-supersymmetric case, these techniques are not available.

The only known geometries describing non-supersymmetric microstates are the ones

of [31]. In the Type IIB duality frame, these solutions carry D1, D5 and momentum charges

in five dimensions. A natural problem is to extend these solutions by adding a Kaluza-

Klein (KK) monopole charge to the system, to produce non-supersymmetric microstates

of the four-charge system in four dimensions. In the supersymmetric case, the analogous

problem can be solved in a systematic manner. The results of [30] imply that a large

class of supersymmetric solutions can be described by a set of harmonic functions. In this

language, adding KK monopole charge turns out to be equivalent to adding appropriate

constants to some of these harmonic functions. However, the analysis of [32] has shown

that the linear structure underlying the supersymmetric solutions is completely destroyed

when we pass to the non-supersymmetric case. Thus, the solution of this problem will

require the use of different techniques. We will approach this problem by the same route

taken to construct the five-dimensional non-supersymmetric microstates in [31]. We will

first construct a suitable general family of stationary geometries, and then find constraints

on the parameters to obtain smooth solutions.

Qualitatively, we would expect the relevant solutions to look like the five-dimensional
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solutions of [31] placed at the core of a KK monopole. We could attempt to directly add

the KK monopole charge to the general metric considered in [31], which was first obtained

in [33]. However, adding the KK monopole charge to the charged solution would be quite

complicated. Instead, we observe that solutions with D1, D5 and momentum charges

can be obtained by starting from a suitable vacuum solution and applying a sequence

of boosts and dualities. For the solution of [33], the relevant vacuum solution was the

Myers-Perry black hole. We can add the KK monopole charge to this vacuum “seed”

solution, and then subsequently add the other charges. This is a useful way to proceed

because there are powerful solution-generating transformations for the vacuum solutions,

based on an SL(3, R) symmetry of the equations of motion [34]. This solution-generating

transformation was used to construct black hole solutions with KK electric and magnetic

charges in [35, 36]. It has recently been shown that it can be used to add KK monopole

charge to any stationary, axisymmetric solution of the vacuum equations [37, 38]. The

black hole solutions of [35, 36] might appear at first glance to provide appropriate “seeds”

for us, but they correspond only to under-rotating versions of the Myers-Perry black hole

placed at the core of the KK monopole, while smooth solutions are obtained by considering

over-rotating black holes. In section 2, we therefore construct new seeds, starting from the

Kerr-Bolt instanton. Once we add the KK monopole charge, the solutions we obtain will

turn out to be an analytic continuation (in parameter space) of the solutions of [35, 36],

and they indeed describe an over-rotating Myers-Perry black hole at the core of the KK

monopole. The general solution carries KK electric and magnetic charges and angular

momentum in four dimensions. The KK electric charge and angular momentum in four

dimensions correspond to the two independent angular momenta in five dimensions, so we

would expect them to be determined in terms of the other conserved charges when we

obtain a smooth solution.

Once we have obtained appropriate vacuum “seed” solutions, we add D1 and D5

charges by a sequence of boosts and dualities in section 3. In this paper we restrict the

analysis to the case with zero momentum charge. The general case has some additional

complications which will be studied in a forthcoming publication. The solution is given

in section 3.3; the reader not interested in the details of its construction can skip to this

point.

In section 4, we identify solutions corresponding to microstates of the brane system by

a systematic search of the parameter space for values at which all the singularities can be

removed. We find that as expected, the smooth solutions are determined by the D1, D5

and KK monopole charges, and an integer n ≥ 1. For all values of n greater than 1 the

solutions are non-supersymmetric; for n = 1 the solution reduces to the supersymmetric

D1-D5-KK microstate found in [25]. In section 5, we verify that the solutions identified in

section 4 are free of horizons, curvature singularities and closed time-like curves, and that

the matter fields are also regular.

In section 6, we study some properties of the solitons. We find that there is a limit in

which the solutions have a near-core geometry which is an orbifold of AdS3×S3; as in [31],

obtaining this limit requires a suitable scaling of the charges. Thus these solutions are good

candidates to describe microstates of the D1-D5-KK black hole. A rather surprising feature
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of these solutions is that in the four-dimensional metric, there is no ergoregion. This is in

contrast to the five-dimensional solutions of [31], where all the non-supersymmetric solu-

tions had an ergoregion. This implies that the instability identified for the five-dimensional

solutions in [39] will not appear for these four-dimensional solutions. Investigating their

stability is an important open problem. We also show that if we write the four-dimensional

solutions as a fibration over a three-dimensional base space, this base space is identical to

that obtained for the five-dimensional solutions of [31] in [32]. Hence, as argued in [32],

the picture of four-dimensional solutions as built up out of half-BPS “atoms” of [27] does

not apply to these non-supersymmetric solutions.

In the future, we would like to extend this class of solutions by adding momentum

charge, thus producing non-supersymmetric microstates of the four charge black hole.

This is not as straightforward as one might imagine, because the three charge solutions

constructed here also carry an induced KK monopole charge along the y direction. Adding

momentum along y by boosting in that direction will therefore produces NUT charges in

the solution, which makes it asymptotically not flat (in four dimensions). It might be

possible to cancel this NUT charge by starting with a seed solution which already carries

some NUT charge. Then one can attempt to cancel the induced NUT charge against the

one present in the seed metric. The details of the construction, however, are likely to be

complicated.

Another important issue to address is the stability of these solitons. It was shown in [39]

that the five dimensional non-supersymmetric microstates of [31] suffer from a classical

instability which arises from the presence of an ergoregion. We have shown that the four

dimensional geometries we construct here do not have a four-dimensional ergoregion, so

we expect that they do not suffer from this particular type of instability. It would be very

interesting to investigate other possible instabilities of this system.

It would also be interesting to relate the geometric picture of the microstates found

here to a microscopic description. It would be particularly interesting to consider the

behaviour of these microstates as we vary the coupling, along the lines of [27], and see if

they can be related to some quiver gauge theory description at weak coupling.

2. Over-rotating vacuum solution

We begin by constructing a suitable vacuum solution carrying KK electric and magnetic

charges. As explained in the introduction, it is easier to add the KK monopole charge

to the vacuum solution and then add the D1 and D5 charges, because we can add KK

monopole charge to any five dimensional stationary axisymmetric vacuum solution of Ein-

stein equation by an SL(3, R) solution-generating transformation [37, 38]. The resulting

general solution will also carry a KK electric charge; this can be thought of as corresponding

to angular momentum along the fiber direction in the five-dimensional geometry. We need

to construct new vacuum solutions because the known black hole solutions of [35, 36] only

describe under-rotating black holes. On the other hand, in order to construct microstates

one needs a family of solutions containing horizon-free geometries. We could construct

appropriate solutions by applying the procedure of [37, 38] to the over-rotating Myers-
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Perry solution. One finds, however, that these solutions lie in the same SL(3, R)-orbit

as the Kerr-Bolt instanton trivially lifted to five dimensions. Hence one can equivalently

construct the required vacuum solution by applying an SO(2,1) transformation to the Kerr-

Bolt instanton. This construction has the advantage of providing a parametrization which

is similar to the one used in [35, 36] and, in fact, the solution we obtain is related to the

one of [35, 36] by a simple analytic continuation in parameter space.

2.1 The solution generating technique

Let us briefly review the solution generating technique of [34]. A stationary solution of

five-dimensional Einstein equations can be brought to the form

ds2
5 = gab(dξa + ωa

idxi)(dξb + ωb
jdxj) +

1

τ
ds2

3 , τ = −detgab, (2.1)

where a, b = 0, 1 and ξ0 ≡ t, ξ1 ≡ z. z is a compact coordinate and ∂
∂z is assumed to be

Killing. ωa are gauge fields on the three-dimensional space parametrized by xi, and thus

they can be dualized to scalars, Va, such that

dVa = −τgab ∗3 dωa, (2.2)

where ∗3 is performed with the metric ds2
3. Introduce the 3 × 3 unimodular matrix

χ =

(

gab − 1
τ VaVb

1
τ Va

1
τ Vb − 1

τ

)

. (2.3)

The equations of motion can be written as

d ∗3 (χ−1dχ) = 0 (2.4)

and

R
(3)
ij =

1

4
Tr(χ−1∂iχχ−1∂jχ). (2.5)

As shown in [37], it is useful to interpret eq. (2.4) as the integrability condition for the

following:

χ−1dχ = ∗3dκ. (2.6)

This defines a 3 × 3 matrix of 1-forms κ. One has that

ω0 = −κ0
2 , ω1 = −κ1

2. (2.7)

The equations of motion are invariant under the linear transformation

χ → NχNT , κ → (NT )−1κNT , N ∈ SL(3, R) (2.8)

if the base metric ds2
3 is kept fixed. This SL(3, R) group of transformations can be used

to generate new solutions from known ones. If one wants to preserve the asymptotic

structure of the solution, which in our case is R
3,1 × S1, the transformation matrix N has

to be restricted to the subgroup SO(2, 1).
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2.2 Constructing the vacuum seed metric

We want to construct a vacuum solution with the following properties: it goes asymptot-

ically to R
3,1 × S1, it carries KK electric and magnetic charges along the S1 and, when

the size of the KK monopole is made much larger than any other length scale, the solu-

tion reduces to the over-rotating Myers-Perry solution. We will obtain such a solution by

applying an SO(2, 1) transformation to the following starting metric:

ds2
5 = −dt2 +

F̃

ρ2 − (m − b cos θ)2

(

dz − 2m∆̃(m − b cos θ)

bF̃
dφ

)2

+(ρ2 − (m − b cos θ)2)

[

dρ2

∆̃
+ dθ2 +

∆̃

F̃
sin2 θdφ2

]

, (2.9)

where F̃ and ∆̃ are

F̃ = ρ2 + m2 − b2 cos2 θ, ∆̃ = ρ2 + m2 − b2. (2.10)

This is a Kerr-Bolt instanton lifted to five dimensions by adding a flat time direction. The

χ and κ matrices associated to the metric (2.9) are

χ =







−1 0 0

0 ρ2−(m+b cos θ)2

F̃
−2mρ

F̃

0 −2mρ

F̃
−ρ2−(m−b cos θ)2

F̃






, (2.11)

κ =









0 0 0

0 2mbρ sin2 θ

F̃

2m∆̃(m−b cos θ)

bF̃
− 2m2

b

0 2m
(

cos θ − b sin2 θ(m+b cos θ)

F̃

)

−2mbρ sin2 θ

F̃









dφ. (2.12)

Of particular interest to us is the asymptotic behavior of κ. This is important in determin-

ing the condition for the absence of NUT charge in the solution obtained after a general

SO(2,1) rotation. We find that

κ ≈







0 0 0

0 0 −2m cos θ

0 2m cos θ 0






(2.13)

for large ρ. Under a transformation N , κ transforms as in (2.8); using also the fact

that ω0 = −κ0
2, we see that the transformed solution is free of NUT charge if the (0, 2)

component of the transformed κ vanishes at large ρ. This leads to the condition

N13N32 = N12N33. (2.14)
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A general SO(2, 1) matrix can be decomposed as N = N3N2N1 where

N1 =







cosh α sinhα 0

sinhα cosh α 0

0 0 1






, (2.15)

N2 =







1 0 0

0 cosh β sinhβ

0 sinh β cosh β






, (2.16)

N3 =







cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ






. (2.17)

Using this parametrization of N , we can rewrite the NUT elimination condition (2.14) as

tan 2γ = tanh α csch β. (2.18)

In order to impose this condition we will find it most convenient to solve the above equation

for α, leaving β and γ as free parameters. Using now the transformation rule (2.8), and

reconstructing the components of the transformed metric from the transformed χ and κ,

we arrive at the following metric:

ds2
5 =

B

A
(dz + Aµdxµ)2 − f2

B
(dt + ω0

φdφ)2 + A

(

dr2

∆
+ dθ2 +

∆

f2
sin2 θdφ2

)

, (2.19)

where

∆ = r2 − 2Mr + P 2 + Q2 − 3Σ2 − b2, (2.20)

f2 = r2 − 2Mr − b2 cos2 θ + P 2 + Q2 − 3Σ2, (2.21)

Aµdxµ =
C

B
dt +

(

ω1
φ +

C

B
ω0

φ

)

dφ, (2.22)

A = (r − Σ)2 − 2P 2Σ

Σ − M
− b2 cos2 θ +

2JPQ cos θ

(M + Σ)2 − Q2
, (2.23)

B = (r + Σ)2 − 2Q2Σ

Σ + M
− b2 cos2 θ − 2JPQ cos θ

(M − Σ)2 − P 2
, (2.24)

C = 2Q (r − Σ) − 2PJ cos θ(M + Σ)

(M − Σ)2 − P 2
, (2.25)

ω0
φ=

2J sin2 θ

f2

[

r − M +
(M2 + 3Σ2 − P 2 − Q2)(M + Σ)

(M + Σ)2 − Q2

]

, (2.26)

ω1
φ=

2P∆

f2
cos θ − 2QJ sin2 θ

[

r(M − Σ) + MΣ + 3Σ2 − P 2 − Q2
]

f2 [(M + Σ)2 − Q2]
. (2.27)

We have redefined the radial coordinate as

ρ = r − M. (2.28)
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The constants M,Σ, Q, P and J are functions of m, b, β and γ, given by

M =
m sinhβ cosh β

√

1 − sin2 2γ cosh2 β
, (2.29)

P = −m cos γ
(

1 − 2 cos2 γ cosh2 β
)

√

1 − sin2 2γ cosh2 β
, (2.30)

Q =
m sin γ

(

1 − 2 sin2 γ cosh2 β
)

√

1 − sin2 2γ cosh2 β
, (2.31)

J = −mb sin 2γ

2

(

1 − sin2 2γ cosh4 β

1 − sin2 2γ cosh2 β

)

, (2.32)

Σ = −m cos 2γ sinhβ cosh β
√

1 − sin2 2γ cosh2 β
. (2.33)

It follows from this that the parameters of the solution satisfy the relations

M2 + 3Σ2 − P 2 − Q2 + m2 = 0, (2.34)

Q2

Σ + M
+

P 2

Σ − M
= 2Σ, (2.35)

b2
[

(M + Σ)2 − Q2
] [

(M − Σ)2 − P 2
]

P 2 + Q2 − M2 − 3Σ2
= J2. (2.36)

In order to perform the dualities of the next subsection, we will also need the potential

V0 associated to the metric (2.19), together with the components κ1
0,φ and κ0

0,φ of κ. They

are given by

V0 = − 2

A
(J cos θ + PQ),

κ1
0,φ =

2

f2

[

Q∆ cos θ +
JP

(M − Σ)2 − P 2
((r − M)(M + Σ)+P 2+Q2−M2−3Σ2) sin2 θ

]

,

κ0
0,φ = − 2

f2

[

(M + Σ)∆ cos θ +
JQP

(M − Σ)2 − P 2
(r − M) sin2 θ

]

. (2.37)

The metric (2.19) is analogous to the metric found in [35], with the crucial difference

that while the metric of [35] goes over to the under-rotating Myers-Perry solution at the

core of the KK monopole, the metric (2.19) approaches the over-rotating Myers-Perry

solution in the same limit. As for the metric of [35], one can rewrite the solution (2.19) in

a somewhat more convenient parametrization, analogous to the one found in [36]. In this

new form, the parameters β and γ are exchanged for parameters p and q, defined as

p = M − Σ, q = M + Σ. (2.38)

The constraints (2.33) imply

P 2 =
p(p2 + m2)

(p + q)
, Q2 =

q(q2 + m2)

(p + q)
, (2.39)

J2 = b2 pq(pq − m2)2

(p + q)2m2
. (2.40)
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We also return to the original radial coordinate, ρ = r − M . Then the metric functions

can be rewritten explicitly in terms of this parametrization as

∆ = ρ2 + m2 − b2, (2.41)

f2 = ρ2 + m2 − b2 cos2 θ, (2.42)

A = f2 + 2p

[

ρ +
(pq − m2)

(p + q)
+ b

√

p2 + m2
√

q2 + m2

m(p + q)
cos θ

]

, (2.43)

B = f2 + 2q

[

ρ +
(pq − m2)

(p + q)
− b

√

p2 + m2
√

q2 + m2

m(p + q)
cos θ

]

, (2.44)

C = 2

√
q√

p + q

[

√

q2 + m2(ρ + p) − q
√

p2 + m2

m
b cos θ

]

, (2.45)

ω0 =
2J sin2 θ

f2

[

ρ − m2(p + q)

(pq − m2)

]

dφ, (2.46)

ω1 =
2
√

p√
p + q

1

f2

[

√

p2 + m2∆ cos θ − b
√

q2 + m2

m
(ρp − m2) sin2 θ

]

dφ. (2.47)

The quantities needed for the dualities can be rewritten in this parametrization as

V0 = − 2

A

√
pq

(p + q)

[

b(pq − m2)

m
cos θ +

√

p2 + m2
√

q2 + m2

]

, (2.48)

κ1
0,φ =

2

f2

√
q√

p + q

[

√

q2 + m2∆ cos θ +

√

p2 + m2b(ρq + m2)

m
sin2 θ

]

, (2.49)

κ0
0,φ = − 2

f2
q

[

∆ cos θ +
b
√

p2 + m2
√

q2 + m2

m(p + q)
ρ sin2 θ

]

. (2.50)

This parametrization manifests the fact that the metric (2.19) is an analytic continuation

of the metric in [36]. The two metrics are related by

pL = 2p, qL = 2q, (2.51)

mL = −im, aL = ib, (2.52)

where pL, qL, mL and aL are the parameters of [36].

3. Adding charges via dualities

In the previous subsection we have constructed a solution of the five-dimensional vacuum

Einstein equations, whose asymptotic limit is R
3,1 × S1. The only charges carried by this

solution are KK electric and KK magnetic charge along the S1, which we denote by Pz

and KKz, respectively.

We can trivially lift this solution to ten dimensions by adding five flat compact direc-

tions, which we denote by y and z1, . . . , z4. By a sequence of boosts and dualities we can

add charges corresponding to D1 branes wrapped along y and D5 branes along y, z1, . . . , z4;
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we denote these charges as D1y and D5y1234. A further boost along y would add Py charge,

but we do not explicitly perform this last step in this paper. In this way we generate a

non-extremal solution carrying Pz, KKz, D1y and D5y1234 charges. When augmented with

the last Py charge, this solution represents the most general non-extremal solution with

four non-compact dimensions: all other solutions are related to this one by dualities.

Let us start by introducing some notation. We rewrite the five-dimensional vacuum

solution in (2.19) as

ds2
5 = −(1 − H)(dt + A)2 + ds2

4, (3.1)

where

(1 − H) = −gtt , A = ω0 +
gtz

gtt
(dz + ω1) , gtt =

Af2 − C2

AB
, gtz =

C

A
,

ds2
4 = − τ

gtt
(dz + ω1)2 +

1

τ
ds2

3 , τ =
f2

A
. (3.2)

When lifted to ten dimensions this solution becomes

ds2
10 = −(1 − H)(dt + A)2 + ds2

4 + dy2 + ds2
T 4 , ds2

T 4 =
4

∑

i=1

dz2
i . (3.3)

3.1 Duality chain

In the following we describe the sequence of boosts and dualities required to add the desired

charges. At each step, the charges of the resulting solution will be given in parenthesis (for

brevity, we will omit the starting Pz, KKz charges, that are present throughout). Since this

procedure is fairly standard by now, we will be very schematic. The only computationally

challenging step is the dualization of the RR 6-form into the corresponding 2-form, so we

will give more details of this step. For brevity, we introduce the notation

s1,5 = sinh δ1,5 , c1,5 = cosh δ1,5 , H1,5 = 1 + H sinh2 δ1,5. (3.4)

B(2) denotes the NS-NS B-field and C(p) the p-form RR field. Φ is the dilaton. All metrics

are in string frame. Our conventions for the normalization of the gauge fields and U-duality

rules are as given in appendix A of [5].

3.1.1 Boost along y with parameter δ5 (Py)

The change of coordinates

t → c5t + s5y , y → s5t + c5y (3.5)

produces the metric

ds2
10 = H5

[

dy − c5s5H

H5
(dt + c5A) + s5A

]2

− (1 − H)

H5
(dt + c5A)2 + ds2

4 + ds2
T 4 . (3.6)
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3.1.2 T-duality along y (F1y)

ds2
10 = H−1

5 dy2 − (1 − H)

H5
(dt + c5A)2 + ds2

4 + ds2
T 4, (3.7)

B(2) =

[

−c5s5H

H5
(dt + c5A) + s5A

]

∧ dy, (3.8)

e2φ = H−1
5 . (3.9)

3.1.3 Boost along y with parameter δ1 (F1y − Py)

The transformation

t → c1t + s1y , y → s1t + c1y (3.10)

gives

ds2
10 =

H1

H5

[

dy− c1s1H

H1
(dt+c1c5A)+s1c5A

]2

− (1 − H)

H1H5
[dt+c1c5A]2+ds2

4+ds2
T 4, (3.11)

B(2) = −c5s5H

H5
[(dt + c1c5A) ∧ (dy + s1c5A)] + s5A ∧ (c1dy − s1dt) , (3.12)

e2φ = H−1
5 . (3.13)

3.1.4 S-duality (D1y − Py)

ds2
10 =

H1

H
1/2
5

[

dy − c1s1H

H1
(dt + c1c5A) + s1c5A

]2

−(1 − H)

H
1/2
5 H1

[dt + c1c5A]2 + H
1/2
5 (ds2

4 + ds2
T 4), (3.14)

C(2) = −c5s5H

H5
[(dt + c1c5A) ∧ (dy + s1c5A)] + s5A∧ (c1dy − s1dt) , (3.15)

e2φ = H5. (3.16)

3.1.5 T-duality along T 4 (D5y1234 − Py)

ds2
10 =

H1

H
1/2
5

[

dy − c1s1H

H1
(dt + c1c5A) + s1c5A

]2

−(1 − H)

H
1/2
5 H1

[dt + c1c5A]2 + H
1/2
5 ds2

4 + H
−1/2
5 ds2

T 4, (3.17)

C(6) =

[

−c5s5H

H5
[(dt + c1c5A) ∧ (dy + s1c5A)] + s5A ∧ (c1dy − s1dt)

]

∧ dz4
i , (3.18)

e2φ = H−1
5 . (3.19)

Note that the type IIB action in our conventions only includes p-forms with p ≤ 4. Thus

the 6-form gauge field generated in the step above has to be dualized to a 2-form by using

the electric-magnetic duality. Note that in the general case (i.e with a non-trivial NS-NS

2-form) the duality equation is modified by the presence of Chern-Simons terms. However

in the case at hand, there is no NS-NS 2-form field and the duality equations are the naive

ones given below.
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3.1.6 EM duality

As explained above, in order to perform the dualities that follow, we need to dualize the

6-form C(6) to a 2-form C(2). That is, we have to find a C(2) satisfying

∗dC(6) = dC(2), (3.20)

where ∗ is performed with the metric (3.17). From (3.18) we find

dC(6) =

[

−c5s5

H2
5

dH∧(dt+c1c5A)∧(dy+s1c5A)+
(1 − H)s5

H5
dA∧(c1dy−s1dt)

]

∧dz4
i . (3.21)

Define 1-forms ω1 and ω2 as

ω1 = dt + c1c5A, (3.22)

ω2 = dy − c1s1H

H1
ω1 + s1c1A, (3.23)

so that

c1dy − s1dt = c1ω2 −
s1(1 − H)

H1
ω1, (3.24)

and

dC(6) =

[

−c5s5

H2
5

dH ∧ ω1 ∧ ω2 +
(1 − H)s5

H5
dA ∧

(

c1ω2 −
s1(1 − H)

H1
ω1)

)]

∧ dz4
i . (3.25)

Let η(1), η(2) be any 1 and 2-forms on ds2
4. The Hodge star operation acts as

∗
[

η(1) ∧ ω1 ∧ ω2 ∧ dz4
i

]

= − H2
5

(1 − H)1/2
∗4 η(1), (3.26)

∗
[

η(2) ∧ ω1 ∧ dz4
i

]

=
H1H5

(1 − H)1/2
(∗4η

(2)) ∧ ω2, (3.27)

∗
[

η(2) ∧ ω2 ∧ dz4
i

]

=
H5(1 − H)1/2

H1
(∗4η

(2)) ∧ ω1. (3.28)

We can use these relations to compute

∗dC(6) = c5s5

( ∗4dH

(1 − H)1/2
+ (1 − H)3/2(∗4dA) ∧ A

)

+s5(1 − H)3/2(∗4dA) ∧ (c1dt − s1dy). (3.29)

The C(2) solving (3.20) can then be written in the form

C(2) = c5s5C + s5B ∧ (c1dt − s1dy), (3.30)

where the 1-form B and the 2-form C have to satisfy

dB = (1 − H)3/2(∗4dA), (3.31)

dC =

( ∗4dH

(1 − H)1/2
+ (1 − H)3/2(∗4dA) ∧ A

)

. (3.32)
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The dualization problem has thus been reduced to finding B and C that solve (3.31)

and (3.32). Note that these equations involve only the seed vacuum metric.

Let us first look at B. If we further decompose B as

B = Bz (dz + ω1) + Bφ dφ, (3.33)

we find that (3.31) implies

dBz = τλ0a ∗3 dωa (3.34)

and

d(Bφ dφ) = ∗3(χ
−1dχ)10. (3.35)

Comparing these equations with the ones defining Va and κ, we see that

Bz = −V0 , Bφ dφ = κ1
0. (3.36)

Similarly let us write

C = (dz + ω1) ∧ Cz, (3.37)

where Cz is a 1-form on the 3D base, which in our case has only has a component along φ.

Then (3.32) implies that

d(Cz + V0ω
0) = ∗3(χ

−1dχ)00, (3.38)

so that a solution is

Cz = −V0ω
0 + κ0

0. (3.39)

In conclusion, we have related the solution of the duality equation (3.20) to the quan-

tities V0, ωa, κ that have been computed for the 5D vacuum solution in (2.48)–(2.50). The

RR 2-form C(2) dual to C(6) is given by (3.30) with

B = −V0(dz + ω1) + κ1
0,

C = (dz + ω1) ∧ [−V0ω
0 + κ0

0]. (3.40)

3.1.7 S-duality (NS5y1234 − Py)

ds2
10 = H1

[

dy − c1s1H

H1
(dt + c1c5A) + s1c5A

]2

−(1 − H)

H1
[dt + c1c5A]2 + H5ds2

4 + ds2
T 4 ,

B(2) = c5s5C + s5B ∧ (c1dt − s1dy), (3.41)

e2φ = H5.

3.1.8 T-duality along y (NS5y1234 − F1y)

ds2
10 = H−1

1 [dy + s1s5B]2 − (1 − H)

H1
[dt + c1c5A]2 + H5ds2

4 + ds2
T 4,

B(2) = c5s5C+
c1s5B
H1

∧ dt+

[

c1s1H

H1
(dt+c1c5A)−s1c5A

]

∧ dy+s5c5s
2
1

1 − H

H1
B ∧ A,

e2φ =
H5

H1
. (3.42)
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3.1.9 S-duality (D5y1234 − D1y)

ds2
10 = H

−1/2
1 H

−1/2
5

(

[dy + s1s5B]2 − (1 − H) [dt + c1c5A]2
)

+H
1/2
1 H

1/2
5 ds2

4 +
H

1/2
1

H
1/2
5

ds2
T 4 ,

C(2) = c5s5C +
c1s5B
H1

∧ dt +

[

c1s1H

H1
(dt + c1c5A) − s1c5A

]

∧ dy (3.43)

+s5c5s
2
1

1 − H

H1
B ∧ A,

e2φ =
H1

H5
. (3.44)

This is the final result: it describes the non-extremal geometry with Pz, KKz, D1y and

D5y1234 charges.

3.2 Change of gauge

It is convenient for later purposes to make a coordinate transformation

y′ = y − s1s5
Q

P
z = y − s1s5

√

q(q2 + m2)

p(p2 + m2)
z. (3.45)

If we combine this with a gauge transformation

C(2) → C(2) − c1s5

√

q(q2 + m2)

p(p2 + m2)
dt ∧ dz, (3.46)

this will leave the metric and two-form gauge field in the same form as before, but with a

shifted B:

B′ = B +

√

q(q2 + m2)

p(p2 + m2)
dz (3.47)

= −
(

V0 −
√

q(q2 + m2)

p(p2 + m2)

)

(dz + ω1) +

(

κ1
0 −

√

q(q2 + m2)

p(p2 + m2)
ω1

)

.

We would like to re-absorb this shift into a redefinition of V0 and κ1
0 as indicated; since

C = (dz + ω1) ∧ [−V0ω
0 + κ0

0], (3.48)

This also involves shifting κ0
0,

κ0
0
′
= κ0

0 −
√

q(q2 + m2)

p(p2 + m2)
ω0. (3.49)
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Thus, the solution is of the same form as before after this transformation, but with the

new quantities

V0 = − 1

A

√

q(q2 + m2)

p(p2 + m2)

[

f2 + 2p

(

ρ + p +
qb

m

√

p2 + m2

q2 + m2
cos θ

)]

, (3.50)

κ1
0 =

2b
√

q
√

p + q

m
√

p2 + m2

sin2 θ

f2
[ρ(pq + m2) + m2(p − q)], (3.51)

κ0
0 = − 2

f2
q

[

∆ cos θ +

√

q2 + m2

p2 + m2

b

m
(pρ − m2) sin2 θ

]

. (3.52)

Henceforth we will always work in this coordinate system, and will omit the prime on y.

3.3 Summary of the solution

We have now constructed an appropriate solution carrying the required charges. Let us

collect together some information about the solution here for ease of reference. As in [31], it

will be convenient for studying the singularity structure to rewrite the solution by writing

factors of A explicitly. Let us therefore write (1 − H) = G/A, H1,5 = H̃1,5/A. Then the

charged metric can be written as

ds2
10 = (H̃1H̃5)

−1/2
[

A(dy + s1s5B)2 − G(dt + c1c5A)2
]

(3.53)

+(H̃1H̃5)
1/2

[

f2

AG
(dz + ω1)2 +

dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2

]

+
H̃

1/2
1

H̃
1/2
5

ds2
T 4 ,

and the matter fields are

C(2) = c5s5C +
c1s5AB

H̃1

∧ dt +

[

c1s1(A − G)

H̃1

(dt + c1c5A) − s1c5A
]

∧ dy

+s5c5s
2
1

G

H̃1

B ∧ A, (3.54)

e2φ =
H̃1

H̃5

, (3.55)

where

A = ω0 − C

G
(dz + ω1), (3.56)

B = −V0(dz + ω1) + κ1
0, (3.57)

C = (dz + ω1) ∧ (−V0ω
0 + κ0

0) = dz ∧ (−V0ω
0 + κ0

0), (3.58)

H̃1,5 = A + (A − G)s2
1,5, (3.59)

G = A(1 − H) =
Af2 − C2

B
. (3.60)

The functions from the vacuum metric are given in equations (2.41)–(2.47), and we work

with the shifted y coordinate, so the quantities from the electromagnetic duality are given

in (3.50)–(3.52). The determinant of the metric is

g = −H̃3
1

H̃5

sin2 θ. (3.61)
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Since both the y and z directions have a finite size as ρ → ∞, the solution is asymp-

totically flat in four dimensions. By rearranging the metric, we can rewrite it in a form

which is suitable for Kaluza-Klein reduction,

ds2
10 = (H̃1H̃5)

−1/2

[

A(dy + s1s5B)2 + D(dz + ω1 + c1c5
C

D
(dt + c1c5ω

0))2
]

(3.62)

+(H̃1H̃5)
1/2

[

− f2

AD
(dt + c1c5ω

0)2 +
dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2

]

+
H̃

1/2
1

H̃
1/2
5

ds2
T 4,

where

D = Bc2
1c

2
5 − f2(c2

1s
2
5 + s2

1c
2
5) +

Gf2

A
s2
1s

2
5. (3.63)

The charges of the four-dimensional asymptotically flat solution are

M =
1

2
[p + q(1 + s2

1 + s2
5)],

P = P =

√

p(p2 + m2)

p + q
,

Q = Qc1c5 =

√

q(q2 + m2)

(p + q)
c1c5,

J = Jc1c5 = b

√
pq(pq − m2)

m(p + q)
c1c5,

Qi = qsici, i = 1, 5. (3.64)

Here M is the mass of the solution and J its angular momentum, expressed in units for

which G4 = 1; P, Q, Q1 and Q5 denote the KK monopole, KK electric, D1 and D5 charges.

3.4 BPS limit

Let us consider the limit of the geometry (3.53) in which m → 0, with the charges and

the angular momentum held fixed. If the charges Q1 and Q5 are fixed to non-zero values,

then the boost parameters δ1 and δ5 must be taken to infinity. The resulting geometry

can be parametrized by its charges, P, Q, Q1 and Q5 (assumed to be positive), and by

the angular momentum parameter b, all of which are finite in this limit. One finds, using

eqs. (3.64), that p, q and δi should behave as

p = P + O(m), q =
(m

Q
)2Q1Q5

P + O(m3), sinh δi =
Q
m

√

PQi

Q1Q5
+ O(m0), i = 1, 5.

(3.65)

In this limit the mass of the solution reduces to the sum of the D1, D5 and KK monopole

charges:

M =
1

2
[P + Q1 + Q5]. (3.66)

This shows that the limit m → 0 saturates the BPS bound.
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Let us introduce the new coordinates

r̃ = ρ − b cos θ , cos θ̃ =
ρ cos θ − b

ρ − b cos θ
. (3.67)

The metric, gauge field and dilaton one obtains after performing the limit (3.65) can be

recast in the form

ds2 = (Z1Z5)
−1/2[−(dt − k)2 + (dy + ωP − k)2] + (Z1Z5)

1/2ds2
B +

(

Z1

Z5

)1/2

ds2
T 4 ,

ds2
B = V −1(dz + χ)2 + V (dr̃2 + r̃2dθ̃2 + r̃2 sin2 θ̃2dφ2),

C(2) = ~Z5 ∧ (dz + χ) + (dy + dt + ωP ) ∧
(

dt + k

Z1

)

e2Φ =
Z1

Z5
. (3.68)

Here Z1, Z5, and V are harmonic functions on the flat three-dimensional space spanned

by the coordinates r̃, θ̃ and φ; k and ωP are 1-forms on the four-dimensional space with

metric ds2
B, of the form

k =
(

Hk +
HP

2V

)

(dz + χ) + ~k , ωP =
HP

V
(dz + χ) + ~ωP , (3.69)

where Hk and HP are harmonic functions and ~k and ~ω are 1-forms on R
3 that satisfy

∗3d~k = V dHk − HkdV − dHP

2
, ∗3d~ωP = −dHP , (3.70)

with ∗3 the Hodge dual on R
3; χ and ~Z5 are 1-forms on R

3 related to V and Z5 by

∗3dχ = dV , ∗3 d~Z5 = dZ5. (3.71)

Now (3.68) is of the general form of a supersymmetric solution with a Gibbons-Hawking

base space, and vanishing momentum along y. This general form was obtained in [30].

This shows that in the m → 0 limit the solution (3.53) becomes supersymmetric.

The explicit values of the functions V , Zi, Hk and HP , which are obtained by taking

this limit of (3.53) are:

V = 1 +
QK

r̃
, Zi = 1 +

Qi

r̃c
, i = 1, 5

Hk = −QKe

2QK

(

1 +
QK

r̃c

)

, HP =
QKe

QK
+

Q1Q5

QKe

(

1

r̃
− 1

r̃c

)

, (3.72)

where we have defined

c = 2b , QK = 2P , QKe = 2Q , Qi = 2Qi , i = 1, 5

r̃c =

√

r̃2 + c2 + 2cr̃ cos θ̃. (3.73)

Let us review the analysis of the singularity structure of the supersymmetric met-

ric (3.68). A general analysis of the regularity of metrics of the form (3.68) has been
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performed in [25, 18, 19, 26, 27]. One should ensure that the 1-forms k and ωP are regular

at the point r̃ = 0, where the KK monopole potential V diverges,. This, in particular,

requires that

kz = Hk +
HP

2V
= 0 (3.74)

at r̃ = 0. This condition is satisfied if

c =
QKQ2

Ke

Q1Q5 − Q2
Ke

. (3.75)

It can be checked that, with the condition (3.75), the metric (3.68), (3.72) is regular if the

coordinates y and z are subject to the identifications1

(y, z) ∼ (y + 2πRy, z) ∼ (y, z + 2πRz)

Ry = 2
Q1Q5

QKe
, Rz = 2

QK

NK
, NK ∈ N. (3.76)

This metric with these identifications coincides with the smooth supersymmetric D1-D5-

KK solution found in [25] by a completely different method, i.e. by adding KK charge to

the extremal D1-D5 geometry of [3, 4].

4. Finding smooth solutions

Within the family of metrics constructed in the previous section, we want to see whether

there are any smooth solutions. We can see by inspection that the metric will have coor-

dinate singularities at H̃1 = 0, H̃5 = 0, θ = 0, π and ∆ = 0. Because H̃1,5 involve 1/B, it

will also have singularities at B = 0. Although the form of the metric in (3.53) appears

to involve factors of 1/G, these cancel out in the actual metric coefficients, as can be seen

from the alternative form (3.62), so there is no problem at G = 0. There is a potential

coordinate singularity at A = 0. There is also a potential singularity at f2 = 0, but since

f2 = ∆ + b2 sin2 θ, we will always meet a singularity at ∆ = 0 first.

We will focus on the singularity at ρ = ρ0 =
√

b2 − m2, where ∆ = 0, and try to

interpret it as a smooth origin. As usual, θ = 0, π should be coordinate singularities. This

will require appropriate identifications, to be analysed later. We would expect that the

other coordinate singularities would be true curvature singularities, so we wish to arrange

to have solutions where H̃1, H̃5, A,B > 0 everywhere. The determinant of the metric on

the surfaces of constant ρ vanishes at ∆ = 0. For the case with no momentum charge

which we are studying in this paper, we require the identifications of y and z to lie in the

surfaces of constant t. Hence for ρ = ρ0 to be a smooth origin, we need the determinant of

the metric on the surfaces of constant ρ and t to also vanish there. This determinant can

be easily evaluated using (3.62):

g(ρt) =
H̃2

1

H̃2
5f2

[

A∆D sin2 θ − c2
1c

2
5(f

2ω0
φ)2

]

. (4.1)

1The metric is strictly speaking regular only for NK = 1. For NK integer greater than one, the metric

has the usual conical singularity corresponding to NK coinciding monopoles.
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In particular, at ∆ = 0, this is a non-zero factor times the square of

f2ω0
φ = 2J sin2 θ

(

ρ − m2(p + q)

(pq − m2)

)

. (4.2)

Therefore, for the determinant to vanish at ρ = ρ0, we need

ρ0 =
√

b2 − m2 =
m2(p + q)

(pq − m2)
. (4.3)

This implies

b2 =
m2(p2 + m2)(q2 + m2)

(pq − m2)2
. (4.4)

We will always assume we take the positive square root. If the parameters satisfy (4.4),

the singularity at ∆ = 0 is a degeneration, where one of the spatial directions is going to

zero size.

We should check that no other singularity will be encountered in the region ρ ≥ ρ0,

0 ≤ θ ≤ π. Using (4.4), we can rewrite

A = f2 + 2p

[

(ρ − ρ0) +
b2

ρ0
(1 + cos θ)

]

, (4.5)

B = f2 + 2q

[

(ρ − ρ0) +
b2

ρ0
(1 − cos θ)

]

, (4.6)

so we can see that A > 0 and B > 0 for ρ > ρ0. Also,

H̃i = Ac2
i − Gs2

i = A

(

c2
i −

f2

B
s2
i

)

+
C2

B
s2
i > 0 (4.7)

for ρ > ρ0, as A > 0 and B > f2. Thus, when (4.4) is satisfied, the only singularities in

the metric are at ρ = ρ0 and at θ = 0, π. Each of these is a degeneration in the (y, z, φ)

part of the metric.

4.1 Identifications

So far, we have performed a local analysis. We now want to see what global identifications

we need to make in the (y, z, φ) space to have a smooth metric. At each of the three

coordinate singularities, ρ = ρ0, θ = 0, or θ = π, some combination of these directions is

going to zero size, and we want to choose an appropriate period to make this a smooth

origin in a plane (we could in general allow orbifold singularities, but for simplicity we

focus on the task of constructing smooth metrics). We will write a general Killing vector

in this space as ξ = ∂φ − α∂y − β∂z, and choose α and β to make the norm of the Killing

vector vanish at the degeneration in each case. The direction which goes to zero size is

then along φ at fixed y + αφ, z + βφ. In each case, it will turn out that we have to set

α = s1s5κ
1
0,φ, β = ω1

φ to make the contributions to ξ · ξ from the first line in (3.62) vanish.

Consider first the singularities at θ = 0, π. At θ = 0, f2 = ∆, ω0 = 0, κ1
0 = 0, and

ω1 = 2

√
p
√

p2 + m2

√
p + q

dφ = 2Pdφ. (4.8)
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Thus the direction which goes to zero size at θ = 0 is along φ at fixed z + 2Pφ, y. The

metric looks locally like dθ2 + sin2 θdφ2, so φ needs to be a 2π periodic coordinate. Thus,

the identification required to make this a smooth origin is2

(y, z, φ) ∼ (y, z − 4πP, φ + 2π). (4.9)

Similarly, at θ = π, f2 = ∆, ω0 = 0, κ1
0 = 0, and ω1 = −2Pdφ, so the direction which goes

to zero size at θ = π is along φ at fixed z − 2Pφ, y, and the required identification is

(y, z, φ) ∼ (y, z + 4πP, φ + 2π). (4.10)

Finally, at ρ = ρ0, f2 = b2 sin2 θ, ω0 = 0, ω1 = −2Pdφ,

κ1
0,φ = 4q

√
q
√

p + q
√

q2 + m2
, (4.11)

so the relevant circle is along φ at fixed z−2Pφ, y+4s1s5q
√

q
√

p+q√
q2+m2

. The leading contribution

to the non-zero size of this circle away from ρ = ρ0 comes just from the ∆
f2 sin2 θdφ2 term

in the metric; the first line of (3.62) makes a contribution of order (ρ − ρ0)
2. Therefore,

writing ρ = ρ0(1 + 2z2), the relevant part of the metric is

4

√

H̃1H̃5

(

dz2 +
ρ2
0

b2
dφ2

)

. (4.12)

Thus, the necessary identification here is

(y, z, φ) ∼
(

y − 8πns1s5q

√
q
√

p + q
√

q2 + m2
, z + 4πnP, φ + 2πn

)

, (4.13)

where n = b/ρ0. We will write

Ry = 4q

√
q
√

p + q
√

q2 + m2
s1s5 (4.14)

in subsequent expressions for compactness. We want the metric that we obtain by Kaluza-

Klein reduction from (3.62) to be asymptotically flat in four dimensions, so after the

dimensional reduction, φ must be 2π periodic. Given the identification (4.13), this imposes

a second condition on the parameters:

n =
b√

b2 − m2
∈ Z. (4.15)

If we consider a solution satisfying (4.4) and (4.15), and the periodici-

ties (4.9), (4.10), (4.13), the metric will be smooth at the coordinate singularities. We

will verify in the next section that it is also smooth in the corners where two circles are

going to zero size simultaneously, and that the matter fields are smooth.

2The shift of y by z we introduced in section 3.2 was chosen to make this and the next identification be

at constant y.
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It is important to note that the periodicities (4.9), (4.10), (4.13) do not fix the lattice

of identifications in the y, z, φ space uniquely. This is because although we need each of

these identifications to be a primitive vector in the lattice,3 (4.9), (4.10), (4.13) do not

necessarily form a basis for the lattice. Specifying the most general lattice consistent with

the requirement that (4.9), (4.10), (4.13) are primitive lattice vectors is quite complicated,

so we will not discuss it in detail. As a particular example, this freedom includes the

freedom to choose the integer-quantized magnetic Kaluza-Klein charge. We get a solution

with NK units of magnetic Kaluza-Klein charge on reduction to four dimensions by taking

the basis of identifications to be

(y, x5, φ) ∼ (y − 2πnRy, z, φ) ∼
(

y, z + 8π
P

NK
, φ

)

∼ (y, z + 4πP, φ + 2π). (4.16)

This is one example of a large space of possibilities consistent with (4.9), (4.10), (4.13).

In the rest of this paper, we will generally proceed as if (4.9), (4.10), (4.13) is a basis of

identifications; any other possibility corresponds to taking an orbifold of the spacetime we

describe. In particular, more general possibilities may have orbifold singularities in the

corners in the ten-dimensional metric.

These smooth solutions admit a unique spin structure, which has antiperiodic boundary

conditions for the fermions around each of the contractible cycles (4.9), (4.10) and (4.13).

The fermions will thus be periodic under z ∼ z + 8πP, and will be periodic under y ∼
y − 2πnRy for odd n, and antiperiodic for even n. Thus, for odd n, the solutions have a

spin structure compatible with preserving supersymmetry at large distances.

4.2 Solving the constraints

There are two constraints on the parameters to obtain a smooth solution, (4.4) and (4.15).

It is useful to have an explicit solution of these constraints. We can obtain a simple solution

by treating p and ρ0 as the independent parameters, and solving for everything else in terms

of them. We then have

b = nρ0, m2 = ρ2
0(n

2 − 1), q =
ρ0(p + ρ0)(n

2 − 1)

(p − ρ0(n2 − 1))
. (4.17)

We assume ρ0, p are such that q > 0. The various functions appearing in the solution can

be rewritten in terms of these parameters, which makes their positivity properties more

3This is necessary to make the metric smooth at the corresponding coordinate singularity. If the identi-

fication is not a primitive lattice vector, we will have an orbifold singularity where this cycle degenerates.
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manifest:

∆ = ρ2 − ρ2
0, (4.18)

f2 = (ρ2 − ρ2
0) + ρ2

0n
2 sin2 θ, (4.19)

A = f2 + 2p[(ρ − ρ0) + n2ρ0(1 + cos θ)], (4.20)

B = f2 + 2
ρ0(p + ρ0)(n

2 − 1)

(p − ρ0(n2 − 1))
[(ρ − ρ0) + n2ρ0(1 − cos θ)], (4.21)

C =
2ρ0

√

ρ0(ρ0 + p)n(n2 − 1)

(p − ρ0(n2 − 1))
[(ρ − ρ0) + (ρ0 + p)(1 − cos θ)], (4.22)

ω0 =
2J sin2 θ(ρ − ρ0)

f2
dφ, (4.23)

J2 =
ρ3
0p(ρ0 + p)n2(n2 − 1)2

(p − ρ0(n2 − 1))
, (4.24)

ω1 =
2

f2

√

p(p − ρ0(n2 − 1))

[

(ρ2 − ρ2
0) cos θ

− ρ0pn2

(p − ρ0(n2 − 1))
(ρ − ρ0) sin2 θ − n2ρ2

0 sin2 θ

]

dφ, (4.25)

and

V0 = −n(n2 − 1)

A

√

ρ3
0(p + ρ0)

p(p − ρ0(n2 − 1))3
[f2 + 2p(ρ + p + (p + ρ0) cos θ)], (4.26)

κ1
0 =

2n
√

ρ0(p + ρ0)

(p − ρ0(n2 − 1))

sin2 θ

f2

[

ρ0(n
2 − 1)

(p − ρ0(n2 − 1))
(p2 + 2pρ0 − ρ2

0(n
2 − 1))(ρ − ρ0) (4.27)

+2ρ2
0(n

2 − 1)(ρ0 + p)

]

,

κ0
0 = − 2

f2

ρ0(p + ρ0)(n
2 − 1)

(p − ρ0(n2 − 1))

[

(ρ2 − ρ2
0) cos θ +

n2ρ0

(p − ρ0(n2 − 1))
(pρ − ρ2

0(n
2 − 1)) sin2 θ

]

.

This parametrization will be used later in relating the n = 1 case to the supersymmetric

solution and to study the near-core decoupling limit of the solutions.

5. Verifying regularity

5.1 Matter fields

The dilaton is clearly regular. For the gauge field C(2), we would like to see that it is possible

to make gauge transformations to make the field regular at each of the degenerations. Recall

from section 3.3 that

C(2) = c5s5C+
c1s5B
H1

∧dt−
[

−c1s1H

H1
(dt+c1c5A)! +s1c5A

]

∧dy+s5c5s
2
1

1−H

H1
B∧A, (5.1)
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where A, B, C are given in (3.56), (3.57), (3.58). We need to calculate the component of

this two-form along the degenerating direction ξ = ∂φ − α∂y − β∂z. This is

iξC
(2) =

[

c1s5(−V0ω
1
φ + κ1

0,φ) + αc1s1H + βc1s5V0

] dt

H1
(5.2)

−
[

s1c5(ω
0
φ − C

G
ω1

φ) + βs1c5
C

G

]

(1 − H)

H1
dy

+

[

c5s5(V0ω
0
φc2

1 − κ0
0,φH1 − (1 − H)

C

G
κ1

0,φs2
1) + αs1c5(1 − H)

C

G

]

dz

H1

+

[

−αs1c5(1 − H)(ω0−C

G
ω1)−βc5s5(−V0ω

0c2
1+κ0

0H1+
C

G
(1 − H)κ1

0s
2
1)

]

1

H1
.

Since at each degeneration, α = s1s5κ
1
0,φ and β = ω1

φ, we can consider the three different

degenerations simultaneously by substituting in these values of α and β. Substituting these

in,

iξC
(2) = c1s5κ

1
0,φdt − s1c5

1 − H

H1
ω0

φdy +

(

c5s5c
2
1V0ω

0
φc2

1

H1
− c5s5κ

0
0,φ

)

dz (5.3)

+

(

s5c5(s
2
1(H − 1)κ1

0,φ + c2
1Vtω

1
φ)ω0

φ

H1
− c5s5ω

1
φκ0

0,φ

)

dφ.

Note that this expression is valid only near one of the coordinate singularities. Since ω0 = 0

at each of these, this expression simplifies to

iξC
(2) = c1s5κ

1
0,φdt − c5s5κ

0
0,φ(dz + ω1

φdφ). (5.4)

These remaining terms are all constants. Thus, these components of C(2) are locally pure

gauge, and it looks like we ought to be able to remove them by a gauge transformation to

obtain a two-form potential which is regular at the degeneration.

However, this may not be possible globally. The integral of C(2) over a closed two-

cycle is gauge-invariant, and if there is a non-zero integral over a two-cycle which shrinks

to zero size, it will indicate a singularity in the gauge field. We therefore need to consider

whether there is any such integral which is non-zero. Since the component of C(2) along

the degenerating direction never has a non-zero dy component, the integrals to consider

are where we integrate over the degenerating cycle and one of the two cycles (4.9), (4.10).

Here we need to consider the cases separately. If the cycle (4.9) is degenerating, then

ω1 = 2Pdφ, and the integral over the 2-cycle formed by the product of the 1-cycles (4.9)

and (4.10) is
∮

C(2) = −16π2c5s5Pκ0
0,φ = 32π2PQ5. (5.5)

When it is the cycle (4.10) which is degenerating, ω1 = −2Pdφ, and the integral over the

2-cycle determined by the cycles (4.9) and (4.10) has the same value as in eq. (5.5). When

it is (4.13) which is degenerating, ω1 = −2Pdφ, so the integral over the product of (4.13)

and (4.10) vanishes, while the integral over (4.13) and (4.9) has the same value as in (5.5).
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These non-zero integrals of C(2) do not immediately imply a singularity in the gauge

field, as there is still the freedom to make large gauge transformations. That is, the gauge

potential (and hence the integral) actually take values in a circle rather than the reals. If

the right-hand side of (5.5) is an integer multiple of the size of the gauge group, it can be

set to zero by a large gauge transformation.

The requirement that (5.5) is an integer multiple of the size of the gauge group is in

fact just the usual quantization of a magnetic charge, required to make the gauge field

well-defined over the whole sphere at large distance. Let us review the usual form of this

argument. The magnetic charge associated with C(2) is the integral of the three-form field

strength over the surface spanned by (θ, z, φ). If we work in a fixed gauge, we can write

this integral as
∮

θzφ
F (3) =

∮

zφ
C(2)|θ=π −

∮

zφ
C(2)|θ=0. (5.6)

At θ = 0, π, the dz∧dφ component of C(2) from (3.54) is simply C
(2)
zφ |θ=0,π = css5dz∧κ0

0 =

∓2qc5s5dz ∧ dφ = ∓2Q5dz ∧ dφ. Thus, integrating over (4.9) and (4.10),
∮

θzφ
F (3) = 32π2PQ5. (5.7)

Now in this gauge, the gauge field is not well-behaved at either end of the range. If we

change the gauge so C
(2)
zφ |θ=0 = 0, then since the charge is gauge-invariant, we will have

C
(2)
zφ |θ=π = 4Q5dz ∧ dφ. For the gauge field to be globally well-behaved on the whole

surface, there must be a large gauge transformation which can be used to shift this to

zero. This is equivalent to requiring that the charge (5.7) is a multiple of the size of the

gauge group. This large gauge transformation is then precisely what we need to see that

the integral (5.5) of the two-form over the degenerating two-cycles is gauge-equivalent to

zero. Thus, we have succeeded in showing that the gauge field is regular up to gauge

transformations.

5.2 Corners

With the conditions above, the solution is smooth at ρ = ρ0 or θ = 0, π. However, it is not

clear what happens in the ‘corners’, where ρ = ρ0 and θ = 0, π. In this section, we will

introduce coordinates which explicitly show that the ten-dimensional geometry is smooth

at these points as well.

Consider first the corner at ρ = ρ0, θ = 0. Define new coordinates by4

r̃ = (ρ − ρ0) + ρ0(1 − cos θ), (5.8)

r̃ cos2 θ̃

2
=

ρ − ρ0

2
(1 + cos θ). (5.9)

In the new coordinates, ρ = ρ0, θ = 0 is at r̃ = 0, with ρ = ρ0, θ 6= 0 along θ̃ = π, and

ρ 6= ρ0, θ = 0 along θ̃ = 0. In these coordinates,

dρ2

∆
+ dθ2 =

1

r̃r̃c
(dr̃2 + r̃2dθ̃2), (5.10)

4Note that for n = 1, these are the same as the coordinates used in section 3.4.
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with r̃2
c = r̃2 + 4r̃ρ0 cos θ̃ + 4ρ2

0. Near r̃ = 0,

ρ − ρ0 ≈ r̃

2
(1 + cos θ̃), sin2 θ ≈ r̃

ρ0
(1 − cos θ̃), (5.11)

so

∆ ≈ r̃ρ0(1 + cos θ̃), (5.12)

f2 ≈ 2r̃ρ0γ, (5.13)

where

γ =
1

2
[(1 + cos θ̃) + n2(1 − cos θ̃)]. (5.14)

We also have

A ≈ 4pb2

ρ0
, (5.15)

B ≈ 2r̃(ρ0 + q)γ, (5.16)

C ≈ r̃

√
q
√

q2 + m2

√
p + q

[

(1 + cos θ̃) +
ρ0 + p

ρ0
(1 − cos θ̃)

]

. (5.17)

The above scalings imply that G, and hence H̃1,5, remain finite as r̃ → 0: the vanishing of

B in the denominator of (3.60) is cancelled by the factor of A, C2 in the numerator. Also,

H̃1,5 are constants, as

G ≈ Af2

B
≈ Aρ0

ρ0 + q
. (5.18)

The one-form A ∼ O(r̃), so we can ignore it, while

B ≈ 2q

√

q(p + q)

q2 + m2

(

dφ +
dz

2P

)

. (5.19)

Hence the first line in (3.53) just involves constants in this limit. After some algebra, the

non-constant part of the metric becomes

f2

AG
(dz + ω1)2 +

dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2 ≈ 1

2ρ0r̃

[

dr̃2 + r̃2dθ̃2 (5.20)

+
r̃2

2n2
(1 + cos θ̃)

(

dφ +
dz

2P

)2

+
r̃2

2
(1 − cos θ̃)

(

dφ − dz

2P

)2 ]

.

Thus, if we define coordinates r̃ = R2, θ̃c = 2ϑ,

ψ1 =
1

2

(

φ − z

2P
)

, (5.21)

ψ2 =
1

2n

(

φ +
z

2P
)

, (5.22)

ŷ = y +
Ry

2

(

φ +
z

2P
)

, (5.23)
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the non-constant part of the metric becomes the standard metric on R
4, while the identifi-

cations (4.9), (4.10), (4.13) become respectively ψ1 ∼ ψ1 +2π, ŷ ∼ ŷ+2πRy, ψ2 ∼ ψ2 +2π.

Thus, the local geometry is globally R
4, and hence smooth near this corner.

Consider next the corner at ρ = ρ0, θ = π. We similarly define new coordinates

r̃c = (ρ − ρ0) + ρ0(1 + cos θ), (5.24)

r̃c cos2 θ̃c

2
=

ρ − ρ0

2
(1 − cos θ). (5.25)

In the new coordinates, ρ = ρ0, θ = π is at r̃c = 0, with ρ = ρ0, θ 6= π along θ̃c = π, and

ρ 6= ρ0, θ = π along θ̃c = 0. In these coordinates,

dρ2

∆
+ dθ2 =

1

r̃r̃c
(dr̃2

c + r̃2
cdθ̃2

c ), (5.26)

where now r̃2 = r̃2
c + 4ρ0r̃c cos θ̃c + 4ρ2

0. Near r̃c = 0,

ρ − ρ0 ≈ r̃c

2
(1 + cos θ̃c), sin2 θ ≈ r̃c

ρ0
(1 − cos θ̃c). (5.27)

so

∆ ≈ r̃cρ0(1 + cos θ̃c), (5.28)

f2 ≈ 2r̃cρ0γc, (5.29)

where as before we will define

γc =
1

2
[(1 + cos θ̃c) + n2(1 − cos θ̃c)]. (5.30)

We also have

A ≈ 2r̃c(ρ0 + p)γc, (5.31)

B ≈ 4qb2

ρ0
, (5.32)

C ≈ 4q3/2
√

q2 + m2(p2 + m2)√
p + q(pq − m2)

. (5.33)

Thus for small r̃c, G ≈ −C2/B is a constant, and H̃1,5 are then constants:

H̃1,5 ≈ C2

B
s2
1,5 ≈ 4q2(p2 + m2)

(pq − m2)
s2
1,5. (5.34)

Also,
f2

AG
≈ − ρ0

ρ0 + p
, ω1 ≈ −2Pdφ, (5.35)

so the f2

AG(dz + ω1)2 term in the metric is a constant size circle, and the non-constant part

of the metric is, up to an overall factor,

dΣ2 =
dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2 +

A

H̃1H̃5

(dy − s1s5V0(dz + ω1) + s1s5κ
1
0)

2. (5.36)
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After considerable algebra, this becomes

dΣ2 ≈ 1

2ρ0r̃c
(dr̃2

c + r̃2
cdθ̃2

c ) +
r̃c

ρ0
(1 + cos θ̃c)

1

n2R2
y

(

dy − s1s5V0(dz + ω1)
)2

+
r̃c

ρ0
(1 − cos θ̃c)

(

dφ +
1

Ry
(dy − s1s5V0(dz + ω1))

)2

. (5.37)

If we set r̃c = R2, θ̃c = 2ϑ, z̃ = z − 2Pφ,

ψ1 =

(

φ +
1

Ry
y

)

, ψ2 = − 1

nRy
y, (5.38)

this becomes the standard metric on R
4, plus some terms involving z̃ which are small com-

pared to the f2

AGdz̃2 factor. The identifications (4.10), (4.13) become in these coordinates

simply ψ1 ∼ ψ1 + 2π, ψ2 ∼ ψ2 + 2π, so the metric is globally R
4, and hence smooth near

this corner.

5.3 Closed timelike curves

Finally, we verify the absence of closed timelike curves in this metric. We will do this by

showing that t is a global time function, which requires gtt < 0 everywhere. A basis of

orthonormal vector fields for (3.62) is

e1 =
(H̃1H̃5)

1/4

√
A

∂y, e2 =
(H̃1H̃5)

1/4

√
D

(∂z + s1s5V0∂y), (5.39)

e3 =

√
∆

(H̃1H̃5)1/4
∂r, e4 =

1

(H̃1H̃5)1/4
∂θ, (5.40)

e0 =

√
AD

f(H̃1H̃5)1/4
(∂t − c1c5∂z), (5.41)

e5 =
f√

∆ sin θ(H̃1H̃5)1/4
(∂φ − s1s5κ

1
0,φ∂y − ω1

φ∂z − c1c5ω
0
φ∂t), (5.42)

plus four more for the T 4. From this, we can compute

gtt = − AD

f2
√

H̃1H̃5

+
f2

∆ sin2 θ
√

H̃1H̃5

c2
1c

2
5(ω

0
φ)2. (5.43)

To show this is negative, we will write it in terms of separate factors independent

of the charges, and show that each of the factors is negative separately. Let us write

gtt = − 1

f2∆
√

H̃1H̃5

U , where

U = F1 + (s2
1 + s2

5)F2 + c2
1c

2
5F3 (5.44)

and

F1 = (1 + H)Af2∆,

F2 = HAf2∆, (5.45)

F3 = A(B − f2)∆ − HAf2∆ − 4J2 sin2 θ(ρ − ρ0)
2. (5.46)
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We already know that A, B, f2 and ∆ are positive for ρ > ρ0. It is also easy to see that

H is positive, as

H =
(B − f2)

B
+

C2

AB
> 0 (5.47)

because B > f2. This implies that F1, F2 > 0. It remains to be shown that F3 > 0.

To show that this last term is also positive, we rewrite it as

F3 =
S

B
=

1

B

[

(A(B − f2)2 − C2f2)∆ − BJ2(ρ − ρ0)
2 sin2 θ

]

. (5.48)

As we already know that B > 0, it is sufficient to show that the term S is positive. This

term is a sixth order polynomial in r = (ρ − ρ0),

S = c6r
6 + c5r

5 + c4r
4 + c3r

3 + c2r
2 + c1r + c0. (5.49)

To prove that S ≥ 0 it is sufficient (though not necessary) to show that the individual

coefficients ci are positive. We find

c6 =
4q(pq − m2)

p + q
, (5.50)

c5 = 8q(pq + 2m2), (5.51)

c4 = c40 + c41 cos θ + c42 cos2 θ, (5.52)

c3 = c30 + c31 cos θ + c32 cos2 θ, (5.53)

c2 =
4m2(1 − cos θ)q(p2+m2)2(q2+m2)

(p+q)2(pq−m2)3
[

c20+c21 cos θ+c22 cos2 θ + c23 cos3 θ
]

, (5.54)

c1 =
8m2q2 sin2 θ(1 − cos θ)(p2+m2)3(q2+m2)2[m2(p+q)(1+cos θ)+2q(pq−m2)]

(p+q)2(pq−m2)4
, (5.55)

c0 = 0. (5.56)

In the following we will not need the explicit values of the coefficients c2i, c3i and c4i.

Noting that p > 0, q > 0 and pq − m2 > 0, the first two coefficients are immediately seen

to be positive. For c4, c3 and c2 the story is more complicated, and it turned out to be

simplest to show these terms are positive indirectly. Let x ≡ cos θ. Then for c4 we have

c4(−1) = (p + q)−2(pq − m2)−1
[

16pq((p2 + 3qp + 4q2)m4 (5.57)

+q(2p3 + 5qp2 + 3q2p + 3q3)m2 + p2q3(p + 2q)) + 16m4q2
(

pq − m2
)]

> 0,

c4(1) =
16q

(p+q)(pq−m2)

[(

p2+3qp+q2
)

m4+2pq
(

p2+qp+q2
)

m2+p3q3
]

> 0, (5.58)

c′′4(x) = −16m2q(p2 + m2)(q2 + m2)

(p + q)(pq − m2)
< 0. (5.59)

From this data one can see that c4 is positive at the boundaries, and is an inverted parabola.

This implies that c4(x) > 0 for all x between −1 and 1. Similar data for c3 also proves
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that it is positive for all values of θ:

c3(−1) =
32q2(p2 + m2)(q2 + m2)

(p + q)2(pq−m2)2
[

p3q2+m2p(p2+pq+q2)+m2(p+2q)(pq−m2)
]

> 0,

c3(1) =
32m2pq2(p2 + m2)(q2 + m2)

(pq − m2)2
> 0,

c′′3(x) = −16m2q(p2 + m2)(q2 + m2)(pq(2q + p) + m2(2p + 3q))

(p + q)(pq − m2)2
< 0. (5.60)

For c2 the argument is more complicated. The prefactors in (5.54) are clearly positive so

it is only necessary to consider the bracketed term. Let us call this term c̃2. We first prove

that c̃′2(x) is positive for x ∈ [−1, 1]. This we do by furnishing the same data as done above

for c4 and c3:

c̃′2(−1) = 4q(pq2(p + 2q) + pm2(2p + 3q) + m2(pq − m2)) > 0, (5.61)

c̃′2(1) = 4q
[(

p2 + pq + q2
)

m2 + p2q2
]

+ 4m2p(pq − m2) > 0, (5.62)

c̃′′′2 = −6m2(p + q)(q2 + m2) < 0. (5.63)

Now given that c̃′2(x) is positive for x ∈ [−1, 1] it is sufficient to show that c̃2(−1) > 0 in

order to prove that c̃2 is positive for all θ. We find

c̃2(−1) =
64m2q3(p2 + m2)2(q2 + m2)

(p + q)(pq − m2)2
> 0. (5.64)

Finally for c1 it is clear from (5.55) that it is positive for all θ. Thus we have shown that

S is positive for all values of ρ > ρ0 and θ. Hence gtt < 0, so t is a global time function,

and there are no closed timelike curves in the geometry.

Note also from (5.43) that gtt < 0 implies D > 0. This will be significant in the

analysis of the four-dimensional solution.

6. Properties of the solutions

6.1 The supersymmetric case

In the special case n = 1, we would expect to recover the supersymmetric solution of [25].

From the parametrization (4.17), we can see that m → 0 with q/m2 and b fixed as n → 1.

Thus, if we scale δi → ∞ so as to keep m2sici fixed as we take n → 1, we will be taking

the extremal limit described in (3.65). In this limit the constraint (4.15) reduces to the

regularity condition (3.75) we have found in section 3.4 for the supersymmetric solution.

Also the identifications (4.16) become equivalent to (3.76). Thus one can think of the

regular supersymmetric geometry (3.68), (3.72) as the particular member of the class of

smooth metrics of section 4 with n = 1, provided that one also takes the δi parameters to

infinity, as specified in (3.65).
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6.2 Ergoregion

In the five-dimensional solutions studied in [31], one of the most striking and important

properties of the solutions was that they have an ergoregion, where the timelike Killing

vector at infinity becomes spacelike. The existence of an ergoregion is a characteristic

property of the non-supersymmetric solutions: unbroken supersymmetry, by contrast, im-

plies the existence of an everywhere causal Killing vector. In [39], this ergoregion was

also shown to imply that the non-supersymmetric solutions of [31] were unstable, using a

general argument due to [40]. It is therefore clearly important to study the ergoregion in

our solutions.

It is difficult to analyse the ergoregion in the ten-dimensional geometry (3.53). The

most general Killing vector which is timelike at large ρ is a linear combination of ∂t, ∂y,

and ∂z, ξ = ∂t − a∂y − b∂z. We have

ξ · ξ =
1

√

H̃1H̃5

[

A(a − s1s5V0b)
2 − G + 2Cc1c5b + Db2

]

. (6.1)

Requiring this to be timelike at large ρ imposes

(

a + s1s5

√

q(q2 + m2)

p(p2 + m2)
b

)2

+ b2 < 1. (6.2)

The expression for ξ · ξ is complicated. To get some insight, we can examine its behaviour

in the corners: at ρ = ρ0, θ = 0,

ξ · ξ =
1

√

H̃1H̃5

[

4pρ0n
2(a − V0s1s5b)

2 − 4ρ0(p − ρ0(n
2 − 1))

]

, (6.3)

where

V0(ρ = ρ0, θ = 0) = −(n2 − 1)

√

ρ0(p + ρ0)3

n2p(p − ρ0(n2 − 1))
. (6.4)

At ρ = ρ0, θ = π,

ξ · ξ =
4ρ0(ρ0 + p)2(n2 − 1)

(p − ρ0(n2 − 1))
√

H̃1H̃5

[1 + (nc1c5 − s1s5)b][1 + (nc1c5 + s1s5)b]. (6.5)

A necessary condition for ξ to be everywhere timelike in the ten-dimensional geometry is

that we can choose a and b to make (6.3) and (6.5) negative while satisfying (6.2). We have

not analysed these conditions in detail; they depend in a complicated way on the charges.

Instead, we will study the ergoregion in the four-dimensional metric we obtain by

Kaluza-Klein reduction. The ergoregion in the four-dimensional metric is in general differ-

ent from the ergoregion in the ten-dimensional metric, since in the Kaluza-Klein reduction,

we project the Killing vector down to four dimensions, losing the contribution to its norm

from the first line in (3.62). The instability of [40, 39] was determined by the presence of

an ergoregion in the asymptotically flat metric, so the ergoregion in the four-dimensional

metric would seem to be more relevant to the question of stability. It also turns out to
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be much easier to determine. For this, we use (3.62), where the four-dimensional metric is

given, up to a conformal factor, by the second line. But we have shown that f > 0, A > 0,

and D > 0 away from the degenerations, so in this 4d metric, ∂t is timelike everywhere.

Thus, there is no ergoregion in the 4d metric!

This might seem quite surprising, but we can understand the difference from the five-

dimensional case on general grounds, without detailed calculation. The four-dimensional

metric we obtain upon Kaluza-Klein reduction is given by (3.62) for some D. Now for this

to have an ergoregion, we would need gtt to change sign while the four-dimensional metric

remains of fixed signature. If we think of the second line of (3.62) as the t direction fibred

over a three-dimensional base metric, to preserve the overall signature, the determinant

of the base metric would have to change sign. But these terms are clearly all everywhere

positive: in particular, the factor in front of dφ2 is positive away from the degenerations.

The difference in the five-dimensional case was that we had a pair of angular directions, so

the determinant of the four-dimensional base metric could change sign without encountering

any degenerations. Thus, we expect the absence of the ergoregion in the four-dimensional

solution to be a general property of such solutions.

Thus, the Killing vector V = ∂t is timelike everywhere in the four-dimensional space-

time. Assuming that we consider test fields propagating on this spacetime which satisfy

the dominant energy condition, it follows that the energy constructed by integration over

a Cauchy surface,

E =

∫

S
V µT ν

µ dSν , (6.6)

will always be positive for any initial data. Hence, the instability discussed in [40, 39] cannot

arise in this case. It is then an open question whether our non-supersymmetric solutions

are unstable. There is no mechanism that would prevent them from being unstable, so

past experience biases us to think that they will be, but this is a very interesting question

for future research.

6.3 Near-core limit

The solutions we have constructed look qualitatively like smooth D1-D5 solutions sitting

at the core of a Kaluza-Klein monopole. We would therefore expect to find that there

is a suitable decoupling limit of the geometry in which we focus on the core region, and

obtain an AdS3×S3 geometry. As in the previous non-supersymmetric case [31], obtaining

such a limit will require us to scale some of the charges in a suitable way, going close to

extremality. In this section, we will construct the decoupling limit for these solutions.

In the parametrization of section 4.2, the only free parameters are p, ρ0 and the charge

parameters. It seems natural to consider a limit where we take ρ0 → 0, while holding p

and the physical D1 and D5 charges fixed: that is, we hold ρ0 sinh δi cosh δi fixed. Note

that this is not the same as the extremal limit introduced in section 3.4, in which we took

m → 0 holding b fixed. In fact, such a limit is incompatible with the constraints imposed

by the smoothness conditions. Thus, here we are not taking the extremal limit with all the

charges held fixed; instead, we are scaling Q and J to zero.
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As we take this limit, we scale the coordinates so as to zoom in on a ‘core’ region in the

geometry, by setting ρ = ρ0r and holding r fixed. As we take the limit, the identification

on the y coordinate scales like 1/
√

ρ0. It is therefore convenient to set y = χ/4
√

pρ0. It

will also be convenient to set t = τ/4
√

pρ0 and z = pψ. In this limit, the metric (3.53)

becomes

ds2
10 ≈ 1

4ℓ2

{

a

[

dχ +
ℓ2n

2

(

(1 + cos θ)

a
(dψ + ω̄1) + κ̄1

)]2

(6.7)

−g

[

dτ +
ℓ2n

2

(

ω̄0 − (1 − cos θ)

g
(dψ + ω̄1)

)]2
}

+
ℓ2

4

[

dr2

r2 − 1
+ dθ2 +

r2 − 1 + n2 sin2 θ

ag
(dψ + ω̄1)2 +

(r2 − 1) sin2 θ

(r2 − 1 + n2 sin2 θ)
dφ2

]

+

√

Q1

Q5
ds2

T 4 ,

where we have set

ℓ2 = 4

√

H̃1H̃5 = 16p
√

Q1Q5, (6.8)

and

a = 2(r − 1 + n2(1 + cos θ)), g = 2(r + 1 − n2(1 − cos θ)), (6.9)

ω̄0 =
(r − 1) sin2 θ

r2 − 1 + n2 sin2 θ
dφ, (6.10)

ω̄1 = 2
(r2 − 1) cos θ − n2r2 sin2 θ

r2 − 1 + n2 sin2 θ
dφ, (6.11)

κ̄1 =
(r + 1) sin2 θ

r2 − 1 + n2 sin2 θ
. (6.12)

This metric has an AdS3 × S3 geometry (at least locally). This can be made explicit by

introducing new angular coordinates

ψ̄ =
1

4
(2φ + ψ), φ̄ =

1

4
(2φ − ψ), (6.13)

and writing

r = 1 + 2R2, χ = ℓ2ϕ, θ = 2θ̄. (6.14)

In terms of these coordinates (6.7) becomes

ds2 = − (R2 + 1)

ℓ2
dτ2 +

ℓ2dR2

R2 + 1
+ ℓ2R2dϕ2 (6.15)

+ ℓ2

(

dθ̄2 + cos2 θ̄(dψ̄ + ndϕ)2 + sin2 θ̄

(

dφ̄ − n

ℓ2
dτ

)2)

+

√

Q1

Q5
ds2

T 4 .

The identifications (4.9), (4.10), (4.13) become in these coordinates simply ψ̄ ∼ ψ̄ + 2π,

φ̄ ∼ φ̄ + 2π and (ϕ, ψ̄) ∼ (ϕ − 2π, ψ̄ + 2πn). These identifications make the spacetime

globally AdS3×S3. Recall however that these may not be the fundamental identifications.

– 32 –



J
H
E
P
1
2
(
2
0
0
7
)
0
6
5

For example, if we adopt the basis of identifications (4.16), the geometry becomes AdS3 ×
S3/ZNK

. More general choices will give other orbifolds of AdS3 × S3 in the decoupling

limit.

The dilaton is a constant in this limit. For the form field, we first need to make a gauge

transformation to get the correct behaviour in the limit: we shift C(2) → C(2) − dt∧ dy, so

that

C(2) = c5s5C + s5c5s
2
1
1 − H

H1
B ∧ A +

c1s5B
H1

∧ dt − s1c5A(1 − H)

H1
∧ dy (6.16)

−(1 − s1(c1 − s1)H)

H1
dt ∧ dy.

Now as ρ0 → 0, this will become

C(2) = pQ5

( C
pρ0(n2 − 1)

+
16n2 sin2 θ

a
dψ̄ ∧ dφ̄

)

+

√

Q5

Q1

n

2
(1 + cos θ)dψ̄ ∧ dτ (6.17)

−
√

Q5

Q1

n

2
(1 − cos θ)dφ̄ ∧ dχ − 1

32pQ1
(r + 1 − n2(1 − cos θ))dτ ∧ dχ.

In the limit,

C = dx5 ∧ (−Vtω
0 + κ0

t ) ≈ −16ρ0p(n2 − 1)
((r − 1) cos θ + n2(1 + cos θ))

a
dψ̄ ∧ dφ̄, (6.18)

so discarding some pure gauge terms from (6.17), the two-form becomes

C(2) = −8pQ5

[

cos θ(dψ̄ +
n

ℓ2
dχ) ∧ (dφ̄ − n

ℓ2
dτ) +

1

ℓ4
rdτ ∧ dχ

]

, (6.19)

which is of the expected form to correspond to an AdS3 × S3 solution.

6.4 Four-dimensional description

Finally, we will make a brief remark about the structure of the four-dimensional metric

obtained by Kaluza-Klein reduction. The four-dimensional metric in the Einstein frame is

ds2
4 = − f2

√
AD

(dt + c1c5ω
0)2 +

√
AD

[

dρ2

∆
+ dθ2 +

∆

f2
sin2 θdφ2

]

. (6.20)

We can think of this as a fibration over the three-dimensional base metric

ds2
3 =

dρ2

ρ2 − ρ2
0

+ dθ2 +
(ρ2 − ρ2

0) sin2 θ

(ρ2 − ρ2
0) + n2ρ2

0 sin2 θ
dφ2. (6.21)

This is exactly the same base metric found in eq. (3.22) of [32] (with (m−n)there = nhere).

Thus, passing from the five-dimensional solutions described there to the four-dimensional

one we consider modifies only the fibration, and not the three-dimensional base metric,

which is what we would expect when adding a Kaluza-Klein monopole charge.

As a result, the structure of the four-dimensional metric is the same as in [32]. In

particular, while the four-dimensional metric is smooth at θ = 0, π, there is a Zn orbifold
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singularity at ρ = ρ0, and there are curvature singularities in the three-dimensional base

metric at the corners ρ = ρ0, θ = 0, π. These curvature singularities in the base metric do

not have simple brane interpretation. Hence, as in [32], the smooth solutions we have found

here do not fit into the picture of [27], where supersymmetric solutions were described as

built up from half-BPS atoms.
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M. Cvetič and F. Larsen, Near horizon geometry of rotating black holes in five dimensions,

Nucl. Phys. B 531 (1998) 239 [hep-th/9805097].

[34] D. Maison, Ehlers-Harrison type transformations for Jordan’s extended theory of gravitation,

Gen. Rel. Grav. 10 (1979) 717; Duality and hidden symmetries in gravitational theories, Lect.

Notes Phys. 540 (2000) 273.

[35] D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454

(1995) 379 [hep-th/9505038].

[36] F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211

[hep-th/9909102].

[37] S. Giusto and A. Saxena, Stationary axisymmetric solutions of five dimensional gravity,

Class. and Quant. Grav. 24 (2007) 4269 [arXiv:0705.4484].

[38] J. Ford, S. Giusto, A. Peet and A. Saxena, Reduction without reduction: adding kk-monopoles

to five dimensional stationary axisymmetric solutions, arXiv:0708.3823.

[39] V. Cardoso, O.J.C. Dias, J.L. Hovdebo and R.C. Myers, Instability of non-supersymmetric

smooth geometries, Phys. Rev. D 73 (2006) 064031 [hep-th/0512277];

V. Cardoso, O.J.C. Dias and R.C. Myers, On the gravitational stability of D1-D5-P black

holes, Phys. Rev. D 76 (2007) 105015 [arXiv:0707.3406].

[40] J.L. Friedmann, Ergosphere instability, Commun. Math. Phys. 63 (1978) 243.

– 36 –

http://jhep.sissa.it/stdsearch?paper=08%282007%29055
http://arxiv.org/abs/0705.1238
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB499%2C253
http://arxiv.org/abs/hep-th/9612229
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB476%2C118
http://arxiv.org/abs/hep-th/9603100
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB531%2C239
http://arxiv.org/abs/hep-th/9805097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=GRGVA%2C10%2C717
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LNPHA%2C540%2C273
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=LNPHA%2C540%2C273
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB454%2C379
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB454%2C379
http://arxiv.org/abs/hep-th/9505038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB575%2C211
http://arxiv.org/abs/hep-th/9909102
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C24%2C4269
http://arxiv.org/abs/0705.4484
http://arxiv.org/abs/0708.3823
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C064031
http://arxiv.org/abs/hep-th/0512277
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C105015
http://arxiv.org/abs/0707.3406
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C63%2C243

